
Landau theory and phase diagram of KMn1−xCaxF3 ferroelastic crystal near the tricritical

point: calorimetric and order parameter study

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 2879

(http://iopscience.iop.org/0953-8984/16/16/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 14:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 2879–2890 PII: S0953-8984(04)75832-4

Landau theory and phase diagram of KMn1−xCaxF3
ferroelastic crystal near the tricritical point:
calorimetric and order parameter study

F J Romero1, M C Gallardo1, S A Hayward2, J Jiménez1, J del Cerro1
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Abstract
The cubic to tetragonal phase transition in the solid solution K(Mn, Ca)F3

has been investigated by conduction calorimetry and x-ray diffraction. The
behaviour of the excess specific heat, latent heat and spontaneous strain has
been explained in terms of a 2–4–6 Landau potential. The coefficients A
and C , prefactors of Q2 and Q6 in the free energy expansion, are practically
constant with composition, but B (the prefactor of Q4) and TC are functions of
composition. The tricritical point occurs when the sign of B changes from
negative (in pure KMnF3) to positive (in Ca rich samples). However, the
variation of the parameters B and TC with dopant concentration x is non-linear.
The dependence of TC with composition is explained in terms of an internal
stress due to the doping ion of Ca and is compared with the effect of external
uniaxial stress on pure KMnF3.

1. Introduction

Potassium manganese fluorite, KMnF3, undergoes a ferroelastic phase transition, analogous
to the transition in SrTiO3, from the cubic perovskite structure to a tetragonal structure at
186 K [1]. This phase transition is discontinuous but close to a tricritical point [2, 3]. In
a previous paper we evaluated the latent heat to be L = 19.5(3) J mol−1 [4]. We have
also shown that the transition can be described using a 2–4–6 Landau potential, �G =
1
2 A(T −TC)Q2 + 1

4 B Q4 + 1
6 C Q6, whose coefficients have been determined experimentally [5].

The first order character of this phase transition can be changed by the effect of the uniaxial
stress (σ ) or compositional substitution. Stokka et al [6, 7] measured the thermal hysteresis
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of the specific heat under uniaxial stress. They reported the existence of a tricritical point near
σ = 0.45 kbar with σ along [110] and the existence of two consecutive tricritical points joined
by a second order line near σ = 0.25 kbar with σ along [100]. In the phase diagram Tmax

versus σ , for a uniaxial stress along [110], two distinct regimes exist; for stresses lower than
the tricritical point, σ ∗ (first order phase transitions), the slope dTmax/dσ is greater than for
stresses higher than σ ∗ (second order phase transitions). They compare this result with the
similar one obtained previously for RbCaF3 under uniaxial stress [8].

Also a similar behaviour has been calculated within molecular-field theory for the [111]
stress induced tricritical point for the ferromagnetic phase transition in MnO [9].

As well as the effect of externally applied stress, various ionic substitutions also modify the
phase transition [10–15]. One of the most interesting cases is the solid solution obtained with
the substitution of Mn by Ca in KMn1−x Cax F3. The addition of Ca2+ impurities increases the
transition temperature and shifts the transition to second-order [10, 11, 13]. It has been argued
that the relevant defect is not simply a Ca2+ ion but a more extended defect configuration. As
Ca2+ ions are much bigger than Mn2+ ions, they act on the (Ca, Mn)–F bonds in a similar way
to a stress along the 〈001〉 directions of the cubic phase.

Gibaud et al [13] argued that if there were a random distribution of Ca2+ defects throughout
a crystal, defects would act as a hydrostatic pressure. Nevertheless, they also suggested that
the Bridgman method of crystal growth might lead to a gradient of chemical composition in
a specific direction that broke the symmetry. However, in this case the doping effect would
be similar to that expected from a uniaxial stress applied along the growth axis, rather than a
hydrostatic pressure.

On the other hand, the behaviour of dilute (as opposed to more concentrated) solid solutions
also needs special consideration. When the solute concentration is high a homogeneous
chemical mixing model generally describes such systems well. This leads to composition-
dependent parameters having a linear dependence on x , for example,

Tc = Tc0 + λx . (1)

In the case of dilute systems, on the other hand, the behaviour of the material as a function of
composition will depend also on the finite length scale of the structural relaxation around the
dopant atoms, and the tendency of solute atoms to attract or repel each other. Salje [16]
describes the cases of strong solute—solute attraction (leading to clustering) and strong
solute—solute repulsion (leading to a widely separated solute distribution) as two limiting
solutions of a single model.

If the solute atoms form clusters, additional solute atoms will tend to cause existing clusters
to grow, rather than nucleating new ones. In this case, �TC ∝ x4/3, and a strong plateau will
be seen; TC will depend only weakly on x for small values of x . If, on the other hand, solute
atoms repel each other, �TC ∝ x2/3, and an inverse plateau will be seen; changes in x will
have a stronger effect on the phase transition for small values of x than in the homogeneous
chemical mixing regime. Inverse plateaus are seen experimentally in the phase diagrams of
K1−x(NH4)x H2PO4 and KH2P1−x AsxO4 [17].

In the intermediate case, �TC is proportional to x , though not necessarily with the same
proportionally constant seen in the chemical mixing regime. Indeed, given that a small solute
concentration will leave most of the sample volume almost totally unaffected, it is intuitive to
assume that the plateau regime for a random solute distribution will be characterized by TC

being almost (perhaps completely) independent of x . This behaviour has been observed in a
number of systems, including PbZrx Ti1−x O3 [18, 19] and the mineral anorthoclase [20].

Irrespective of the behaviour of the system in the dilute regime, there is eventually a
crossover to simple chemical mixing. This occurs when the distortion fields around individual
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solute atoms (or clusters of solute atoms) coalesce. Where each defect is a single solute atom,
the composition of the dilute regime/chemical mixing crossover, xC, will furnish a value of the
relaxation lengthscale; a typical cusp extending to xC = 1% implies a defect cloud volume of
100 unit cells, or a radius of approximately 3 lattice repeats. If solute atoms cluster, a calculation
of this radius based on xC will tend to underestimate the radius somewhat. However, unless
the system is in the strong clustering/strong plateau regime, this error is unlikely to be great.

In a previous paper we have confirmed, by measuring the specific heat and the latent heat,
that the effect of the Ca is to shift the character of the transition to second order [4, 21]. We
have also described the transition for the doping concentrations x = 0.3% and 2.3% by means
of a 2–4–6 Landau potential whose coefficients have also been determined [22]. The analysis
showed that the fourth order coefficient and TC change strongly with the calcium concentration.

In this paper we report a systematic study of the solid solution KMn1−x Cax F3 (with x = 0,
0.3%, 1.7%, and 2.3%), and its analysis in terms of Landau theory. To study this solid solution
we have carried out calorimetric and x-ray diffraction measurements. We have determined the
effect of x on Landau free energy coefficients and we compared the phase diagram TC versus
x with the phase diagram TC versus uniaxial stress (σ ) for pure KMnF3 as obtained by Stokka
et al [6].

2. Experimental details

2.1. Sample characteristics

The samples of KMn1−x Cax F3 were provided by the University of Maine (Le Mans, France).
They were prepared by the Bridgman–Stockbarger method. The resulting crystals were
approximately cylindrical, with a thickness of 5 mm and circular (001) faces.

The chemical characteristics of the samples were examined using an electron microprobe
CAMECA SX50. The pure KMnF3 sample did not show any trace of calcium. The doped
samples showed Ca concentrations of x = 0.3 mol%, 1.7% and 2.3%. The microanalysis
experiments showed slight inhomogeneities in the composition of the doped samples; for
example, the composition of the fourth sample is 2.30% ± 0.13%. We will argue that this
inhomogeneity plays an important role in the behaviour of these crystals around the transition
temperature.

2.2. Experimental methods

The measurements of specific heat and latent heat were performed by a high-resolution
conduction calorimeter [23]. The experimental system uses the conduction calorimetry method
described fully elsewhere [24]. The sample is pressed between two identical heat fluxmeters,
each made from 50 chromel–constantan thermocouples [25] connected in series with wires
placed in parallel lines. Using this method it is possible to obtain absolute values of specific
heat.

In addition, the heat flux exchanged by the sample, which gives the total enthalpy change
during the transition, was measured on the same apparatus using a technique analogous to
differential thermal analysis (DTA) [4, 26]. It is also important to note that the system measures
the heat flux and the specific heat in independent experiments, but using the same calorimeter
and sample, and under similar thermal conditions. As a result, the specific heat and heat flux
measurements are directly comparable.

Combining these two experiments we can evaluate the part of the total enthalpy that
corresponds to the variation of specific heat with temperature, and separate it from the part of
the enthalpy that corresponds to the latent heat. This analysis is important when the specific
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Table 1. Latent heat (L) and temperature of the specific heat maximum (Tmax) as a function of
Ca concentration.

Composition (mol% Ca) Tmax (K) L (J mol−1)

0 185.95 19.5(2)
0.30 189.72 1.5(8)
1.70 197.33 0
2.30 200.38 0

heat is very high around the transition temperature and the latent heat is small, as occurs in
phase transitions near to the tricritical point, as studied in this work.

The experimental system changes the sample temperature at an extremely slow rate
(typically 0.1 K h−1), so that the sample is kept practically in equilibrium. We have a specific
heat data point every 0.04 K, so the excess of entropy obtained from the integration of CP data
has no experimental statistical errors.

The order parameter may, in principle, be measured using a very wide range of techniques.
A particularly convenient method is to determine the spontaneous strain associated with the
transition. Where single crystal samples are available (as is the case in KMnF3), strain data
may be obtained using x-ray diffraction, using the rocking curve technique. This is described
in detail elsewhere [27]. The relationship between Q and the spontaneous strain depends on
the symmetry properties of the transition. In the case of the Pm3m–I4/mcm transition in this
perovskite, the spontaneous strain εS is proportional to Q2.

3. Results and discussion

The order of the transition was characterized by measuring the latent heat using the method
previously described. The analysis has been reported previously [4, 21] and the results are
summarized in table 1. The effect of the Ca substitution is to decrease the value of the latent
heat and, hence, to make the transition second order. The addition of 0.3% Ca reduces the
latent heat to less than 10% of its value in pure KMnF3. No latent heat was found for the 1.7%
and 2.3% doped crystals. The values of the latent heat indicate that the sample with x = 0.3%
is close to the tricritical point.

The specific heat data for the four samples are shown in figure 1 over a wide temperature
range. At high temperatures (cubic phase) the specific heat of each sample shows a linear
temperature dependence. All samples show an anomaly in the specific heat related with the
cubic–tetragonal phase transition. The temperature at which the maximum of the specific heat
is obtained, Tmax, also increases with the calcium concentration (table 1). For the three Ca
doped samples, the Tmax versus x graph is practically linear with approximately 5.3 K/% Ca
as the slope. However, the value of Tmax for pure KMnF3 lies around 2 K below this straight
line.

The qualitative shapes of specific heat curves for the two samples showing a first order
transition, pure KMnF3 and KMnF3 with 0.3% Ca, are similar. Both show a sharp anomaly
and a relatively insignificant tail above the transition point. However, the 1.7% and 2.3%
doped samples show a much more rounded peak and the transition is smeared over a wider
temperature interval, with a significant tail of excess specific heat above the transition point.

This tail is probably due to the heterogeneity of the sample composition in the more highly
doped samples. Combining the slope of Tmax versus x and the variation in composition for
the sample with 2.3% Ca, we estimate that the width of the transition for this sample is about
1.3 K, which agrees well with the width of specific heat around the transition temperature.
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Figure 1. Experimental specific heat versus temperature for various compositions of
KMn1−x Cax F3. Only filled circles represent specific heat data in the monophasic state.

Table 2. Landau coefficients for each sample of KMn1−x Cax F3.

Sample (% of Ca) A (J K−1 mol−1) B (J mol−1) C (J mol−1) TC (K)

0 2.78(1) −57.4(6) 573(40) 185.76(1)
0.3 2.9(2.2) −6(4) 500(400) 190.13(1)
1.7 2.87(1) 20(5) 540(40) 200.16(1)
2.3 2.79(1) 24(5) 540(40) 202.98(1)

On the other hand, the specific heat data obtained in the temperature interval where the
latent heat is produced (coexistence of phases interval) are not reliable data, because they do
not correspond to data in the monophasic state. These data are represented by open circles
in figure 1. Only the data represented by filled circles in figure 1 are data that represent the
specific heat when the sample is in the monophasic state (para or ferro phase), and these are
the data that we will consider in the analysis of the specific heat curves.

In order to analyse theoretically these phase transitions we have fitted the experimental
data for each sample to a 2–4–6 Landau potential,

G = A

2
(T − TC)Q2 +

B

4
Q4 +

C

6
Q6, (2)

whose coefficients for each sample are summarized in table 2. It should be noted that the
error for the sample of 0.3% are bigger than the others; this is due to the error of L and the
covariance in the errors that exist between the parameters.

We observe that the sign of B changes at a composition slightly larger than 0.3%. Thus
the fraction of Ca doping for which this transition passes through the tricritical point (x∗) is
slightly higher than 0.3%.

The next step is to compare the Q(T ) behaviour predicted by the fitted potential with
independent measurements of the order parameter made by another technique, such as the
spontaneous strain, proportional to the twin angle measured by x-ray diffraction. Figures 2(a)–
(c) show the good agreement between the experimental order parameter, obtained using
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Figure 2. Comparison of the twin angle (proportional to Q2) with the theoretical order parameter
behaviour derived from the Landau potential determined from the calorimetric data for various
compositions of KMn1−x Cax F3.
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Figure 3. (T/�cP )2 versus temperature for each sample. This function is expected to be linear
for a phase transition described by Landau theory.

strain data and the equilibrium behaviour predicted from the Landau potential fitted using
calorimetric data. The scaling between the twin angle and the order parameter was taken as
an additional fitting parameter. This agreement justifies the use of Landau theory to describe
these transitions. Also, according to Landau theory, we can see in figure 1 (filled circles) that
the specific heat maximum increases with Ca concentration until the tricritical concentration;
higher concentrations make the maximum of specific heat decrease.

The results in table 2 show that A and C do not change significantly. We can check this
further by analysing the detailed behaviour of the specific heat. In a phase transition where
the excess free energy is described by equation (2), the excess specific heat �c is given by

(
T

�c

)2

= 16A3

C
(T2 − T ) where T2 = Tc +

B2

4AC
.

Thus graphs of (T/�c)2 against temperature should be linear, with the same gradient for each
sample. Figure 3 shows that these slopes are, within experimental uncertainties, the same for
all four experimental curves.

Meanwhile B , TC and Tmax are strongly dependent on the degree of Ca doping. If we plot
B and Tmax versus x , as in figure 4, we can also see that the behaviour is clearly non-linear; all
these quantities increase more rapidly for small x (where the transition is first order), than for
larger x (where the transition is second order). However, the precise form of this crossover, and
the composition at which it happens, are not fully constrained by these results. Measurements
on samples at several additional compositions would be needed to determine these details.

Non-linear variations of TC have also been found in the phase diagram of TC versus uniaxial
stress (σ ) for a number of perovskite materials. In fact for RbCaF3 under uniaxial stress a
change in the TC versus σ gradient occurs unambiguously at the tricritical point [8].

To compare the effects of doping with Ca and uniaxial applied stress in KMnF3, we
follow a method similar to the analysis of Pb(ZrxTi1−x)O3 by Rossetti et al [28]. Figure 5(a)
shows the variation of Tmax with the dopant concentration x from our data. The equivalent
graph figure 5(b) shows the change in Tmax with [110] stress, as measured by Stokka and
Fossheim [7].
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Figure 4. Variation of Landau coefficients (a) B and (b) TC with composition in KMn1−x Cax F3.

Stokka et al [6, 7] measured the specific heat as a function of temperature under uniaxial
stress. From these measurements, they determined the temperature of the specific heat
maximum, which they labelled TC, and the width of the thermal hysteresis, �TC. Since
the TC in the Landau potential is not, in general, identical to the temperature of the specific
heat maximum, we describe the temperature of the specific heat maximum as Tmax in this
report.

Both graphs, figures 5(a) and (b) show a change in slope at the tricritical point (x ≈
0.3 mol% for Ca doping, σ = 0.45 kbar for [110] stress), but that for chemical doping is much
more pronounced.

In figure 5(c), we renormalize the two applied variables (Ca doping and [110] stress)
to their values at the tricritical point. This figure shows that the changes in Tmax caused
by forcing the transition to the tricritical point are equal, whether the tricritical point is due
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σ

σ

σ σ

Figure 5. (a) Variation in the temperature of the cP maximum with Ca doping in KMnF3. The fit
lines show the different behaviours of the plateau regime (broken and dotted curves for linear and
cusp-like plateaux, respectively) and the chemical mixing regime (solid line). (b) Variation in the
temperature of the cP maximum with stress along [110], showing different gradients above and
below the tricritical point. In part (c), the two applied variables are both normalized to have value
1 at the tricritical point.
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to stress or Ca doping. This indicates an underlying similarity about the effects of these
two external variables. On the other hand, the two curves are not identical, unlike the case
of Pb(Zrx Ti1−x)O3 [28]. The likely reason for this is that the effect of Ca doping is not
proportional to the quantity of dopant; small concentrations of Ca have a greater effect than
larger concentrations. This behaviour is consistent with the inverse plateau model of dilute
solid solutions. However, it is not possible to study the detailed form of the cusp with the
available data; more samples with different compositions in the range x < 1% would be
needed for this. As a result, we can neither confirm nor rule out the theoretical prediction [16]
that the exact form of the cusp is �TC ∝ x2/3.

Neither are we able to determine a precise value of the critical composition for the crossover
between the inverse plateau and chemical mixing regimes. Using the data in figure 5(a), and
making the rather simplistic assumption that Tmax is linear with x in both regimes, the critical
composition is x = 0.35 mol% Ca. Using the inverse plateau model to describe the Ca-poor
solid solution, the crossover occurs at x = 0.5 mol% Ca. However, both these estimates
are problematic, since the form of the Tmax(x) lines for both the chemical mixing and dilute
regimes are determined by only two data points.

Using x = 0.5% as an upper limit for the critical composition, we may estimate a lower
limit on the lengthscale of the distortion cloud surrounding each defect in KMnF3 perovskite.
This distortion cloud has a volume of at least 200 unit cells, and so its radius is at least of
the order of 3.5–4 unit cells, or rC ≈ 15 Å. Given that an inverse plateau is observed, it is
likely that the defects (that is, the solute atoms) are repelling each other, so cluster formation is
unlikely, at least as an equilibrium phenomenon. Any clusters that did form, however, imply
that the radius of the distortion field around each defect was even larger.

From the form of the phase diagram in the K(Mn, Ca)F3 system, we have shown that
individual Ca defects have rather long-range interactions, and that they tend to repel each other.
These interactions are probably of an elastic nature. The local crystal structure of these defects
has been studied directly by diffuse x-ray diffraction methods [29]. These results are consistent
with the observation of a tail in the measurements of the specific heat, which is particularly
pronounced in the 2.3% Ca doped sample. Such local anisotropic defect configurations lead
to an additional term in the free energy of the phase transition;

G = A

2
(T − TC)Q2 +

B

4
Q4 +

C

6
Q6 − h1 Q − h2 Q2. (3)

Coupling of the form −h2 Q2, where h2 is the field (here, the uniform stress of the defects),
is always allowed by symmetry; it causes TC to vary with chemical doping. The term −h1 Q is
not symmetry allowed for the uniform state,but if configurations of defects with the appropriate
symmetry are present in the sample then the resulting strains can have the same symmetry as
the order parameter and the term is allowed. Physically this could mean that a few Ca atoms
together make the octahedra rotate in the same way as happens in the low temperature phase.
Although such clusters appear to be thermodynamically unfavourable, given the large repulsive
forces noted above, they may exist as a kinetically frozen-in state. This possibility is consistent
with the observation that the Ca doping in the x = 2.3% sample is rather heterogeneous.

Figure 6 shows experimental specific heat for KMn1−x Cax F3 with x = 2.3%, and the
best-fit curve of a 2–4–6 Landau potential with an additional term −h1 Q. We can observe
that the tail is consistent with this thermodynamic model. However, since the Ca distribution
is not very uniform, the inhomogeneity can influence the data beyond the −h1 Q term, so that
the graph of figure 6 gives only a qualitative conclusion.

In this study, we have shown that the free energy coefficients for the Pm3m–I4/mcm
phase transition in the K(Mn, Ca)F3 system vary in a smooth way with composition, and
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Figure 6. Experimental specific heat for KMn1−x Cax F3 with x = 2.3% and the best-fit curve
obtained if a 2–4–6 Landau potential plus the term −h Q is considered.

large changes in the free energy coefficients are only seen for TC and B . This observation is
consistent with a generalized free energy of the form

G(T, Q, x) = A0

2
(T − TC0)Q2 +

B0

4
Q4 +

C0

6
Q6 + k1(x)Q2 + k2(x)Q4, (4)

where k1(x) causes TC to change as a function of x , and k2(x) changes B (driving the order
of the transition). Although k1 and k2 are composition dependent, both functions are highly
non-linear, at least for small vales of x .
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